website design Berkley Massachusetts

Berkley web designers

web design for kids

Hello and welcome to this web designers Web Designer Berkley video tutorial.

I’m Owen Corso from Google.

web design xd web design mockup

And today, we’re going to build a rich media expandable creative with video.

Let’s start by selecting file, New File.

This opens a dialog box where we will set up our ad.

First, let’s make out high of project.

We have four options– The default is Display & Video 360so we will leave that as is.

web design trends 2018

Material Design Components for web - Designer vs. Developer #22

There's a lot involved when it comes to building a good website.

You've got to start thinkingabout SEO from the ground up.

It can't be an afterthought.

The website needs to be safe and secure.

It needs to be fast.

It needs to look good.

It needs to be responsive so it looks good on a cellphone or a laptop or a tablet.

It's your bread andbutter of your business.

So you want to haveyour best foot forward.

You've got to have a great website.

Berkley web designers

Next, we can select the type of ad.

We want to make an expandable, so we select Expandable on the left.

Next, we can set again ad’s dimensions.

We are building a 320 by 50that expands to 480 by 250.

So I will make those changes.

We then assign the Berkley creative a name.

I will leave my Save ToLocation as the default, and leave the talk about set to Quick.

Once I’m happy with my settings, I click OK.

Google Web Designer creates the initial pages of the ad for me with the dimensions I defined.

 

web designers Berkley

The collapsed page already contains a Tap Area event to expand the ad and an expanded pageBerkley with a close tap area to collapse back down.

web design proposal pdf

Building Expanding Creatives - Google Web Designer

web design resume

Sketch was made for screen-based design.
Websites, app interfaces, icons… these objects of design exist within a world of pixel measurements, RGB colors, and presentation on digital screens. Unlike many of the Adobe creative tools which include 10,000 features and the kitchen sink, Sketch is laser-focused in its purpose—and consequently works far better (and more efficiently) for what it does do.

Sketch was not made for print-based design.
Business cards, brochures, posters… these exist within a physical world of inch/centimeter/point/pica measurements, CMYK or Pantone colors, and presentation on a variety of papers and materials. Adobe Illustrator and InDesign are two of the most popular tools in this arena.

If you’re like me, you’re far more efficient working in Sketch.

And when a print design project rolls around, you might find yourself yearning to continue using the same tool you’ve become so adept at using for web/UI design. I want you to know that it’s possible. Here’s how I do it:

(full disclosure: Adobe Illustrator is required)

The Magic Number 72

Dating back to the craft of setting lead type for a printing press, the primary units of measurement were points (72 per inch) and picas (12 per inch). Lead type (pictured here) is measured in points, and is produced in pica or half-pica increments such as 12, 18, 24, 36, and 72 points. Those numbers should sound familiar to you, as they became standard digital font sizes with the Macintosh. The first Macs used screens where every inch contained 72 pixels, resulting in 12pt text that looked practically the same size onscreen as in print. The evolution of pixels per inch (PPI) is too extensive for this article (especially since the advent of retina displays), although it’s important to know a bit about the origins of this 72:1 ratio.

This article will mostly use inch measurements, as used for print design in the US. If you are familiar with a centimeter workflow, I’d love to hear from you!

Sketch measures everything in pixel units, so we need a way to convert our design to the physical world of inches. By now you may have guessed where this is going: 72 pixels in Sketch converts to 1 inch in an exported PDF.

  • An 8.5" × 11" piece of paper (US Letter) converts to a 612px × 792px artboard.
  • A typical 3.5" × 2" business card converts to a 252px × 144px artboard.
  • When adding a new artboard, Sketch 3 gives you a few “Paper Sizes” presets. Speed things up by adding your own custom artboard presets!

The pixel dimensions of a 72 PPI layout may be far smaller than you are used to when working on websites or user interfaces. Remember that the clarity of your print project is dictated by the print method you use—Sketch’s “Show Pixels” function is of no use here!

Tips for Designing Your Layout

  • For elements in your design, try to use measurements that make sense in inches. 1px = 1pt for lines and font-sizes. I’ll often use 1/8 inch (9px) or 1/16 inch (4.5px) increments for layout elements.
  • You can use Sketch’s Grid feature to make these inch-appropriate positions or measurements easier. I suggest a grid with a 9px (1/8 inch) block size and thick lines every 8 blocks (1 inch). Show/hide the grid with ⌃G on your keyboard.
  • You can turn off “Pixel Fitting” in Preferences. There’s no need to be a stickler for pixel alignment as you would be for screen-based design.

Margins & Bleeds

Professional print shops often require your artwork to have extra space on all sides, extending any parts of your design that “bleed” out to the edge (see example below). This compensates for the slight, yet inevitable, variance in where the edges are cut on your final print. My printer asks for a 1/8 inch bleed, and I often add this to my Sketch layout (9px extra on all sides). If your design has elements that bleed, I suggest you do the same—if not, you can easily add these extra margins later when saving a PDF from Illustrator. Printers will also recommend that any text is at least 1/8 inch inside the trim lines (a “safe zone” or “critical print area”), as in the business card below.

The “Trim Lines” indicate what the final card will look like. Because trimming is rarely 100% accurate, any parts of the design that extend to the very edge should continue out to a “Bleed”. Shown here, the bleed extends to 1/8 inch outside the artwork.

Preparing the File for Print

99% of print shops are strict about the specifications of your “artwork” files. The following process will help you give printers the files they want! If your layout relies heavily on images, gradients, or shadows, skip to the next section!

When you have finished your design in Sketch, export it as a PDF at 1x scale. Many programs, such as Preview or Adobe Illustrator will automatically interpret the file at 72 PPI. You can view the PDF’s dimensions in inches in Preview (Tools > Show Inspector, ⌘I), or in pixels using Finder’s Get Info window (under “More Info”). If you save your PDF through Illustrator, pixel and inch dimensions will be automatically included in the file.

There are 2 other things we need to change about Sketch’s exported PDF:

  1. Text needs to be “Converted to Outlines”.
  2. The colors need to be CMYK values instead of RGB.
  3. Any images in the design need to be embeded as CMYK images.

Converting Text to Outlines

To ensure that your design is printed exactly how you see it on your computer, it is important to convert the text objects in the PDF to actual vector shapes, or “outlines”. This makes the text look exactly the same on any program on any computer, regardless of the fonts you’ve used in the design, and regardless of whether or not those fonts are installed on the printer’s computer.

You can convert text to outlines in Sketch (more about that here), although if your design has more than a few lines of text, Sketch will slow down dramatically. If you want a guaranteed way to crash Sketch, try selecting a dozen text objects and converting them to outlines all at once! Fortunately, Adobe Illustrator excels in this department, so we’ll use that instead.

  • Open the PDF in Illustrator and navigate to Select > All (⌘A), from the menu bar.
  • Also in the menu bar, navigate to Type > Convert Text to Outlines (⌘⇧O). Easy as that!

Converting to CMYK Colors

After opening your PDF in Illustrator, navigate to File > Document Color Mode > CMYK Color. This converts the entire document to a CMYK colorspace from RGB. That’s the easy step. Now we have to change the colors in our design to actual CMYK values.

If you’re used to screen-based design and appreciate great colors, I feel obligated to tell you that CMYK may disappoint you. Due to the nature of combining those 4 colors (cyan, magenta, yellow, and black) in ink, many bright and saturated colors are difficult or impossible to recreate. Without diving into color theory or the pros/cons of various print methods, I will simply suggest that for any color that is important to your design you see a sample of that exact color value from a similar printer on a similar material. To do this I recommend choosing a close match on a Pantone swatchbook (a bit pricey, but a great investment), or ask your printer for a printed sample of a variety of colors printed on the paper you’ll use (they probably already have these, and can give you each color’s CMYK value).

Once you’ve chosen great CMYK values for all your colors, it’s time to replace the color value for each of the elements in your design. This sounds tedious—and to a certain extent it is—but I’ve discovered a few shortcuts to help you!

  • First off, you will need to select the elements whose colors you want to change. If you aren’t familiar with Illustrator, know that a layer is only selected when you click the small circle to the right of it. Simply clicking on the layer’s name will not do anything!
  • If your design has many elements with the same color (say, all green text), they can be selected all at once by first selecting one instance of the element then clicking the “Select Similar Objects” button on the right of the toolbar. If this toolbar or button isn’t available, try navigating to Select > Same in the menu bar.
  • When your elements are selected, hold down the Shift key when you click on the fill color in the toolbar (fill color to the left, stroke/border color to the right). Even elements that are pure black need to be converted to CMYK black, for which there is a little swatch below the color sliders.

Last Step!

When all of your text has been converted to outlines and all of your colors are CMYK, it’s time to save a separate PDF (I add “-print” as a suffix to the new filename). By using File > Save As, you get a trillion options for the PDF. The single option I ever use is to add a bleed margin (my printer likes 1/8 inch) on all sides of the artwork. To do this, go to the “Marks and Bleeds” section on the left and uncheck “Use Document Bleed Settings”, as shown below.

You’re all done! Trust me, next time this process will take you half as long!

Is Your Design Image-Heavy?

If your Sketch design includes bitmap images (non-vector images), they will be automatically converted from RGB to CMYK when you change the Document Color Mode. Upon importing the PDF to Illustrator, any shadows in your design will be converted to bitmap images and any gradients will become un-editable “Non-Native Art”. Because of this, if images, shadows, or gradients are important to your design, I strongly suggest you instead save the entire Sketch layout as a PNG and convert it to a CMYK file in Photoshop using the following steps.

  1. Export the Sketch artboard as a PNG at 4.166x scale, which gives you the amount of pixels you’ll need for a 300 PPI print-ready file. Printers rarely accept bitmap images less than this resolution. Make sure your artboard includes the necessary bleed margins (described above) before export.
  2. Open the PNG in Photoshop and navigate to Image > Image Size, in the menu bar. Uncheck the “Resample” checkbox and type in either the artwork’s dimensions in inches or the “Pixels/Inch” you used when exporting from Sketch (again, this is often 300 PPI). Click “OK”.
  3. In the menu bar, navigate to Image > Mode > CMYK Color. This will alert you that Photoshop is converting the file to a default CMYK color profile. This step may visibly change the colors of your design. Rest assured that your computer screen is not an accurate representation of colors in print, although you should also not expect the same bright or saturated colors capable with RGB (as described above).
  4. Adjust the colors slightly if you desire, then Save As a .psd or .tif file. Be sure to tell the printer what bleed margins you included in the artwork!

Of course you can use this process in conjunction with the PDF + Illustrator workflow above, by embedding the Photoshopped images into your Illustrator document. But most of the time I stick to one process or the other.

Is This Workflow Right for You?

If you’re fast at designing in Sketch, feel more at ease or more creative using it, or aren’t very familiar with Illustrator/InDesign, this may be good for you. This may also be a useful workflow if you have existing designs from Sketch (an interface, icon, logo) that you want to prepare for professional printing. I can’t read the future, but with Bohemian Coding’s small team and success focusing on screen-based design, I don’t advise you to hold your breath for print features. It’s a huge can of worms!

Examples of projects made with this workflow. From packaging, to letterpressed business cards, to laser-engraved signage. This work for Juice Shop recently won the Type Directors Club’s prestigious annual design competition.

I’ve written this article to share my workflow for print design projects, but also to learn of ways that I might improve this workflow in the future. If you have any suggestions, especially related to Illustrator or the print process, feel free to share them!

Be the first to know when I publish new design articles and resources.
 
I just released Sketch Master — online training courses for professionals learning Sketch. You’ll learn tons of tricks and practical workflows, by designing real-world UI/UX and app icon projects.

Sketch Master
Sketch Master is a collection of video training courses for professionals learning Sketch—the popular design tool. sketchmaster.com

How I joined Google

Backstory

I am a product designer at Google, and I joined the company through Sparrow, a French startup that got acquired on July 20, 2012. Since then, I worked with the Gmail team to build from scratch a flagship product that became Inbox by Gmail. It shipped on October 22, 2014.

I designed productive applications for a few years, and I felt like I reached a tipping point. I wanted to expand my skill set, learn new things every day and get better at something I’ve never touched. I needed new challenges to reboot myself by leaving my comfort zone.

I got interested in virtual reality around the Oculus Kickstarter period because of the immersiveness and endless possibilities that came with it. There is nothing more exciting than building for a new medium and exploring an uncharted territory.

I joined the Google Cardboard and Virtual Reality team on April 17, 2015. Thanks to Clay Bavor and Jon Wiley for this great opportunity.

Another dimension

My first weeks in the team were as scary as it can get. People used words I had no idea of and asked me questions I didn’t know how to answer.

I am not going to lie, ramping up on the jargon was not easy but I was expecting that. Virtual reality is a deep field (pun intended) grouping together a variety of job titles each requiring a very specialized skill set. The first weeks were intense and day after day I had a better vision of the big picture. Slowly, the pieces came together. I found out which roles would be the best fit, what I wanted to do and what was required to get there. Regardless of the mission, I knew I would have to learn a lot, but I was prepared for this challenge. My feelings varied from one day to another. From super excited to create and learn something new, to super scared because of the colossal knowledge I still had to learn. Working with smart and knowledgeable people around me reinforced these mixed feelings.

Everything is going to be alright

I told myself and firmly believed that the dots would connect eventually. I am a passionate person, and I knew that I didn’t mind spending hours learning and experimenting.

During my product designer career, I got better at understanding, identifying and resolving user problems. Making things easy to use and delight users is not that different, no matter the medium.

The core of the mission is the same, but to get you from point A to B there are some interesting things to know.

  • Sketching, is, again, at the core of everything. During any brain dump or design phase, sketching is as fast as it can get. I’ve sketched more in the time I’ve joined this team than I have in my entire career.
  • Any design skills as diverse as they are will be a huge benefit.
  • Photography knowledge will help you because you will interact with concepts such as field of view, depth of field, caustics, exposure and so on. Being able to use light to your advantage has been much valuable to me already.
  • The more you know 3D and tools, the less you will have to learn. It’s pretty obvious but be aware that at some point, you might do architecture, character, props modeling, rigging, UV mapping, texturing, dynamics, particles and so on.
  • Motion design is important. As designers, we know how to work with devices with physical boundaries. VR has none, so it’s a different way of thinking. “How does this element appear and disappear?” will be a redundant question.
  • Python, C#, C++ or any previous coding skills will help you ramp up faster. Prototyping has a big place because of the fundamental need of iterating. This area is so new that you might be one of the first to design a unique kind of interaction. Any recent game engine such as Unity or Unreal engine largely integrates code. There is a large active community in game and VR development with a huge amount of training and resources already.
  • Be prepared to be scared and get ready to embrace the unknown. It’s a new world that evolves every day. Even the biggest industry-leading companies are still trying to figure things out. That’s how it is.

Roles

Design teams will evolve because this new medium opens a lot of possibilities for creation. Think about the video game or the film industry for instance.

I think there will be two big design buckets.

The first one will be about the core user experience, interface, and interaction design. This is very close to how product design team are structured today (Visual, UI, UX, motion designers, researchers, and prototypers).

Each role will have to adapt to the rules of this new medium and keep a tight relationship with engineers. The goal will always remain the same; create a fast iteration cycle to explore a wide range of interactive designs.

On the other hand, content teams will replicate indie and game design studio structure to create everything from unique experiences to AAA games. The entertainment industry as we know it in other mediums will likely be very similar in VR.

Ultimately, both will have a close relationship to create a premium end to end experience. Both industries have a great opportunity to learn from each other.

To wrap up on my personal experience, I think being a product designer in VR is not that different but requires a lot of dedication to understand and learn a vast field of knowledge.

First step and fundamentals of VR design

First step

In this second part of the article, I will try to cover the basics you need to know regarding this medium. It’s meant to be designer oriented and simplified as much as possible.

Let’s get (a little bit) technical

The new dimension and immersiveness is a game changer. There is a set of intrinsic rules you need to know to be able to respect physiologically and treat your users carefully. We regrouped some of these principles in an app so you can learn through this great immersive experience.

Download Cardboard Design Lab

You can watch Alex’s presentation at I/O this year which goes more in-depth. The following is a small summary.

If you have to remember just two rules:

  • Do not drop frames.
  • Maintain head tracking.

People instinctively react to external events you might not be aware of, and you should be designing accordingly.

Physiological comfort. It regroups notions like motion sickness. Be careful when using acceleration and deceleration. Maintain a stable horizon line to avoid the “sea sickness” effect.

Environment comfort. People can experience various discomforts in certain situation like heights, small spaces (claustrophobia), big spaces (agoraphobia) and so on. Be careful with the scale and colliding objects. For example, if someone throws an object at you, you will instinctively try to grab it, dodge or protect yourself. Use it to your advantage and not to user’s disadvantage.

You can also use user senses to help you create more immersive products and cues. You can find inspiration in the game industry. They use all sorts of tricks to guide users during their journey. Here’s a couple:

  • Audio for spatial positioning.
  • Light to show a path and help the player.

Do not hurt or over-fatigue your users. It’s a classic mistake when you start to design for this medium. As cool as it looks, Hollywood sci-fi movies fed us with interactions that goes against simple ergonomic rules and can create major discomfort over time. Minority Report gestures are not suitable for a long period of activity.

I made a very simplified illustration of XY head movement safe zones. Green is good, yellow is ok and avoid red. There are a some user studies made public (links at the bottom of the page) that will give you more in-depth information about that topic.

A simplified illustration of XY head movement safe zones.

Bad design can lead to more serious conditions.

As an example, have you heard about Text Neck? A study, published in Neuro and Spine Surgery measured varying pressures in our neck as our head moves to different positions. Moving from a neutral head position looking straight ahead to looking down increase the pressure by 440%. The muscles and ligaments get tired and sore; the nerves are stretched, and discs get compressed. All of this misbehavior can lead to serious long-term issues such as permanent nerves damages.

TLDR; Avoid extended look down interactions.

Degrees of freedom

The body has six different ways of moving in space. It can rotate and translate in XYZ.

3 Degrees of freedom (Orientation tracking)

Phone based head mounted device such as Cardboard, Gear VR are tracking the orientation via an embedded gyroscope (3DOF). Rotations on all three axes are tracked.

6 Degrees of freedom (Orientation + Position tracking)

To achieve six degrees of freedom, the sensor(s) will track positions in space (+X, -X, +Y, -Y, +Z, -Z). High-end devices like HTC Vive or Oculus Rift are 6DOF.

Tracking
Making 6DOF possible frequently involves optical tracking of infrared emitters by one or more sensors. In Oculus’s case, the tracking sensor is on a stationary camera, while in Vive’s case the tracking sensors are on the actual HMD.

Oculus and Vive lighthouses position tracking

Inputs

Depending on the system you are designing for, the input method will vary and affect your decisions. For example Google Cardboard has a single button, that’s why the interaction model is a simple gaze and tap. HTC Vive uses two, six degrees of freedom controllers and Oculus will ship with an Xbox One controller but will eventually use a 6DOF dual controller “Oculus Touch”. All of them allow you to use more advanced and immersive interaction patterns.

The good old Xbox OneOculus Touch

There are also other kinds of inputs such as hand tracking. The most famous being Leap Motion. You can mount it to your Head Mounted Display (HMD).

Leap Motion on top of a DK2

This area constantly evolves as technology catches up but as of today, hand tracking is not reliable enough to be used as the main input. The principal issues are related to hands and fingers, collisions, and subtle movements tracking.

Even though it’s very familiar, using a game controller is a disappointing experience. It physically removes some of the freedom VR is creating. In FPS, strafing and moving might usually cause some discomfort because of the accelerations.

On the other hand, the HTC Vive controllers reinforce the VR experience thanks to the 6 degrees of freedom, and Tilt Brush is a really good example. As I am writing theses lines, I haven't tried the Oculus touch but every demo I have seen looks very promising. Check out Oculus Toybox demo.

While designing user interfaces and interactions, inputs are the keystone that will drive some decisions differently depending on which method you are using. You should be familiar with all of them and aware of their limitations.

Tools

This is a big piece and might require a more in-depth article. I will focus on the most popular tools used in this industry.

Pen and paper

You just can’t beat them. It’s the first tool we use because it’s always around and does not require too many skills. It’s a proven way to express your ideas and iterate at a fast and cheap pace. Theses factors are important because, in VR, the cost of moving from wireframes to hi-fi is higher than 2D.

Sketch

I still use it every day. Because of its ease of use, it’s the perfect tool that allows me to create a lot of explorations before moving to a VR prototype. It’s also handy for its export tools and plugins that are a huge time saver. If you are not familiar with that program, I wrote articles here and there.

Cinema 4D

I don’t see C4D as a competitor of Maya. Both are great tools, and each excels in its own way. When you don’t have a 3D background, the learning curve can be very steep. I like C4D because the interface, the parametric and non-destructive approach make sense for me. It helps me create more iterations quickly. I love the MoGraph modules, and a lot of great plugins are available. The community is very active, and you can find a lot of high-quality learning materials.

Cinema 4D motion explorations

Maya

Maya is colossal in a good and a bad way. It does anything and everything a 3D artist needs. Most of the games and movies are designed with it. It’s a robust piece of software which can handle massive simulations and very heavy scenes with ease. From rendering, modeling, animation, rigging, it’s simply the best tool out there. Maya is highly customizable, and that is one reason why it’s the industry standard. Studios need to create their own set of tools, and Maya is the perfect candidate to integrate any pipeline.

On the other hand, learning all the tools will require your full and unconditional dedication for quite some time. I mean weeks of explorations, months of learning and years of practice on a daily basis.

Unity

It’s most certainly THE prototyping tool where everything will happen. You can easily create and move things around with a direct VR preview of your project. It’s a powerful game engine with a great community and a ton of resources available in their store (the asset author determines the pricing). In the assets library, you can find simple 3D models, complete projects, audio, analytics tools, shaders, scripts, materials, textures and so on.

Their documentation and learning platform are stellar. They have a wide range of high-quality tutorials.

Unity3d uses mainly C# or JavaScript and comes with Microsoft Visual Studio but doesn't come with a built-in visual editor even though, you can find good ones in the assets store.

It support all major HMD and is the best to build for cross-platform: Windows PC, Mac OS X, Linux, Web Player, WebGL, VR(including Hololens), SteamOS, iOS, Android, Windows Phone 8, Tizen, Android TV and Samsung SMART TV, as well as Xbox One & 360, PS4, Playstation Vita, and Wii U

It supports all major 3D formats and has the best in 2D game creation. The in-app 3D editor is weak, but people have built great plugins to correct that. The software is licensed based, but you can also use the free version to a certain extent. You can check the details on their pricing page. It’s the most popular game engine out there with ~47% of market share.

Unreal Engine

The direct competitor of Unity3D. Unreal also has great documentation and videos tutorials. Their store is smaller because it’s much newer.

One of the big advantages over the competition are the graphic capabilities; Unreal is one step ahead in nearly every area: terrain, particles, post processing effects, shadows & lighting, and shaders. Everything looks amazing.

Unreal Engine 4 uses C++ and comes with Blueprint, a visual script editor.

I haven’t worked with it too much yet, so I can’t elaborate more.

Less cross-platform compatibility: Windows PC, Mac OS X, iOS, Android, VR, Linux, SteamOS, HTML5, Xbox One, and PS4.

Closing notes

Virtual reality is a very young medium. As pioneers, we still have a lot to learn and discover. That’s why I am very excited about it and why I joined this team. We have the opportunity to explore and we should, as much as we can. Understand, identify, build and iterate. Over and over.
And over again…

Resources

Community

  • Immersive design Facebook group

Videos

  • Google I/O 2015 — Designing for Virtual Reality
  • Oculus Connect keynotes
  • VR Design: Transitioning from a 2D to 3D Design Paradigm
  • VR Interface Design Pre-Visualisation Methods
  • 2014 Oculus Connect — Introduction to Audio in VR

Tutorials

  • Cinema 4D tutorials
  • Unity 3D tutorials
  • Maya and 3D tools tutorials

Articles

  • LeapMotion — VR Best Practices Guidelines
  • The fundamentals of user experience in virtual reality
  • Ready for UX in 3D?

Thanks everyone who helped me with the rereading and improvements 💖

web design requirement

1. Gestures are the new clicks

We forget how hard scrolling webpages used to be. Most users would painstakingly move their mouse to the right edge of the screen, to use something ancient called a ‘scrollbar’:

As a pro, you probably used a mouse wheel, cursor keys, or trackpad, but you were way ahead of most users.

In 2015 it’s far easier to scroll than it is to click. On mobile, you can scroll wildly with your thumb. To click on a precise target is actually more difficult — the complete opposite of what we’re used to on the desktop.

As a result, we should expect more and more websites to be built around scrolling first, and clicking second. And of course, that’s exactly what we’ve seen everywhere:

There’s every reason to expect this trend to continue as mobile takes over more of the market. Modern sites have fewer things to click, and much more scrolling. We’ll see fewer links, more buttons, bigger ‘clickable’ areas, and taller pages that expect to be scrolled.

Websites which spread their articles onto multiple pages will soon learn this lesson. Expect these to turn into longer single pages or even, like TIME magazine, into infinite scrolling pages:

It’s too early to know if the web will expand itself onto devices like watches, but if it ever does, you can bet it’ll be almost entirely driven by gestures.

2. The fold really is dead this time

Now scrolling is so cheap, and devices are so varied in size, ‘the fold’ is finally becoming irrelevant.

Designers are increasingly free to not cram everything at the top of a page. This leads to a design trend popularised by Medium — full-screen image titles, with no content visible until you start scrolling:

With tall, scrolling pages, designers have the chance to do what magazines have taken for granted for years: fill their pages with big beautiful images. In 2015 expect to see more designs that take up much more space — especially vertically — and a lot of larger imagery like this.

3. Users are quicker, websites are simplifying

Today every young adult is an expert web user. And even the amateurs are acting like pros: using multiple tabs, and swiping to go back a page.

The result is that everything is faster. And we’ve all learned to become impatient. If you want to make a mild mannered person explode with annoyance, just make their Internet really slow for a minute.

Now websites are forced not just to become faster (a technical problem), but to become faster to understand. Designs which slow the user down have the same impact on their audience as these websites which don’t load at all.

Simpler designs are easier to scan, which means they’re faster to appreciate. It’s easy to see which of these two designs is newer, and it’s because it’s the one that user’s can enjoy the fastest:

This is the biggest reason for the death of skeuomorphic design: users are more perceptive, less patient, and clutter only slows them down.

Apps put most websites to shame with super-minimal, beautiful interfaces. And they’re doing this because minimal interfaces perform better.

Flat design is just the beginning. The real trend is towards simplicity and immediacy, and we expect that to go further than ever in 2015.

4. The pixel is dead

On a desktop, a pixel was a pixel. You even had an idea of how many pixels made up an average inch: 72 dpi. Nowadays very few people know what a pixel is.

With responsive design, we’ve seen a move towards grids and percentages. But one huge area remains still unchallenged: bitmap images.

Almost all of the web is built with images that have half the resolution of a modern display, and they don’t scale. With Retina displays and modern browsers, the time is right for vector images to become more popular in 2015.

We can see this trend already happening with the font-based icons and Google’s Material design. The website loads faster and scale the icons to any size without losing quality. That makes them ideal for designers and modern web browsers.

The technology exists now, but it will take time for professionals to change their habits to create for higher quality displays. Once the average desktop display becomes Retina-grade (like the new iMac), we expect designers to follow suit.

5. Animation is back

If you want to make a website look dated, cover it with animated “Under Construction” GIFs and Flash animation. But several things are coming together to make animation a rising star in modern web design.

Flat design can end up looking too consistent, boring even. Animation helps a website to stand out and to pack more information into less space.

Mobile apps have redefined what a user expects. Mobile apps use motion to convey meaning, and websites are just starting to do the same.

New technologies like CSS animation make it easy to enhance designs without plugins, speed or compatibility issues. And Web Components (#6, below) will only accelerate this.

GIF animation is back, and surprisingly effective. You’ll notice this article makes extensive use of GIF animation (if it doesn’t, you should view this version), which has never been easier to create or share.

6. Components are the new frameworks

Web technology continues to get more complicated, and less semantic. Designers must embed messy code onto their pages for simple tasks, like including Google Analytics or a Facebook Like button. It would be a lot easier if we could just write something like this instead:

<google-analytics key=”UA-12345–678">

And we can with Web Components, which aren’t quite ready to be used by most designers yet. 2015 is looking like their year.

Google’s Material design is here, and it may just be what gets this movement started. Powered by Polymer, and supported by all modern browsers, it provides the rich animation and interaction components from Android apps, with simple tags like these:

If that takes hold, it wouldn’t be surprising to see more component based frameworks appear in 2015. Perhaps Bootstrap 4.0?

7. Social saturation and the rise of direct email

Social media has been a huge success for consumers, but many content producers aren’t so happy.

The problem is saturation. With billions of posts every day, Facebook learns the posts that users are most likely to enjoy and shows only those. Unfortunately that means over time, what you post is increasingly seen by a smaller percentage of your followers. (A problem you can solve, conveniently, by paying Facebook).

Social isn’t going away, but in 2014 we’ve seen a lot of prominent bloggers like Tim Ferriss move their focus away from social and into good old fashioned email lists. They’ve realised that email has one significant advantage over social: a much higher percentage of people will see what you send them.

I expect this post-social trend to continue into 2015, with the under-appreciated trend of Web Notifications (which work much like notifications in a mobile app).

Bonus non-prediction: CSS shapes

This cool technology won’t get noticed, except by designers. CSS shapes allow you to flow layout into shapes, like circles:

It’s incredibly cool, but until browser support is guaranteed, this is likely to be too risky to put time and effort into it you’d need almost two complete designs, for old and new browsers. And outside of designers, we don’t think many users would notice.

It is really cool though.

What to expect in 2015

In 2014 we saw mobile use overtake desktop, but the general public hasn’t caught up. Most organisations still commission a website to look good on their computer first and work on mobile second.

In 2015 that strategy is likely to look out of touch and unprofessional. As the mobile becomes the main device for browsing the web, “mobile-first” will become less of a buzzword and more of a requirement.

Flat design may be everywhere, but when you look beyond ghost buttons the real trend is that simpler sites are faster at gratifying users.

Simplicity is not just a fashion: it’s the future. Expect it to only continue.

It will become more and more common to embed animation into blog posts, and for motion to signify both premium quality (for those who can afford it) and to support the user experience.

Pixels and the fold will slowly be set aside making more room for scrolling and click-second experiences. Web Components will make it easier to deliver app-like experiences in our websites.

Right now you see the best of mobile app design appearing in web design. With enough time, the difference between an app and a website might almost entirely disappear.